On the Influence of Multiplication Operators on the Ill-Posedness of Inverse Problems

نویسندگان

  • Melina Freitag
  • Bernd Hofmann
چکیده

In this thesis we deal with the degree of ill-posedness of linear operator equations Bx = y in Hilbert spaces X =Y = L2(0,1), where B may be decomposed into a compact linear integral operator J with a well-known decay rate of singular values and a multiplication operator M. This case occurs for example for nonlinear operator equations F(x) = y, where F = N ◦J. Then the local degree of ill-posedness is investigated via the Fréchet derivative in x0 ∈ D(F) which has the form F ′(x0) = M ◦ J providing the situation described above. If the multiplier function has got zeroes, the determination of the local degree of ill-posedness is not trivial. We are going to investigate this situation, provide analytical tools as well as their limitations. By using several numerical approaches for computing the singular values of F ′(x0) we find that the degree of ill-posedness does not change through those multiplication operators. We even provide a conjecture, verified by several numerical studies, how these multiplication operators influence the singular values of F ′(x0) = M ◦ J. Finally we analyze the influence of those multiplication operators on the opportunities of Tikhonov regularization and corresponding convergence rates. In this context we also provide a short summary on the relationship between nonlinear problems and their linearizations. Zusammenfassung Diese Arbeit beschäftigt sich mit dem Grad der Inkorrektheit linearer Operatorgleichungen der Form Bx = y in Hilberträumen X = Y = L2(0,1), wobei B als Komposition eines vollstetigen linearen Integraloperators J mit bekannter Abklingrate der Singulärwerte und eines Multiplikationsoperators M dargestellt werden kann. Dieser Fall tritt beispielsweise bei nichtlinearen Operatorgleichungen F(x) = y, wobei F = N ◦ J. Dann wird der lokale Inkorrektheitsgrad über die Fréchet-Ableitung in x0 ∈ D(F) bestimmt, welche mit F ′(x0) = M ◦ J die oben beschriebene Form hat. Falls die Multiplikatorfunktion Nullstellen hat, ist die Bestimmung des lokalen Grades der Inkorrektheit nicht einfach. Möglichkeiten und Grenzen der Analyis für diese Situation werden betrachtet. Unterschiedliche numerische Ansätze für die Bestimmung der Singulärwerte von F ′(x0) liefern das Ergebnis, dass der Grad der Inkorrektheit durch die Multiplikatorfunktionen nicht beeinflusst wird. Es wird sogar ein Zusammenhang gefunden, wie diese Multiplikationsoperatoren die Singulärwerte von F ′(x0) = M ◦ J beeinflussen. Schließlich werden noch die Möglichkeiten der Tikhonov Regularisierung unter Einfluss der Multiplikationsoperatoren untersucht. In diesem Zusammenhang wird auch eine kurze Zusammenfassung zur Beziehung von nichtlinearen Problemen und ihren Linearisierungen gegeben.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A numerical Algorithm Based on Chebyshev Polynomials for Solving some Inverse Source Problems

In this paper‎, two inverse problems of determining an unknown source term in a parabolic‎ equation are considered‎. ‎First‎, ‎the unknown source term is ‎estimated in the form of a combination of Chebyshev functions‎. ‎Then‎, ‎a numerical algorithm based on Chebyshev polynomials is presented for obtaining the solution of the problem‎. ‎For solving the problem‎, ‎the operational matrices of int...

متن کامل

Stability Rates for Linear Ill-Posed Problems with Convolution and Multiplication Operators

In this paper we deal with thèstrength' of ill-posedness for ill-posed linear operator equations Ax = y in Hilbert spaces, where we distinguish according to M. Z. Nashed 15] the ill-posedness of type I if A is not compact, but we have R(A) 6 = R(A) for the range R(A) of A; and the ill-posedness of type II for compact operators A: From our considerations it seems to follow that the problems with...

متن کامل

A regularization method for solving a nonlinear backward inverse heat conduction problem using discrete mollification method

The present essay scrutinizes the application of discrete mollification as a filtering procedure to solve a nonlinear backward inverse heat conduction problem in one dimensional space. These problems are seriously ill-posed. So, we combine discrete mollification and space marching method to address the ill-posedness of the proposed problem. Moreover, a proof of stability and<b...

متن کامل

Implementation of Sinc-Galerkin on Parabolic Inverse problem with unknown boundary ‎condition‎

The determination of an unknown boundary condition, in a nonlinaer inverse diffusion problem is considered. For solving these ill-posed inverse problems, Galerkin method based on Sinc basis functions for space and time will be used. To solve the system of linear equation, a noise is imposed and Tikhonove regularization is applied. By using a sensor located at a point in the domain of $x$, say $...

متن کامل

Ill-Posed and Linear Inverse Problems

In this paper ill-posed linear inverse problems that arises in many applications is considered. The instability of special kind of these problems and it's relation to the kernel, is described. For finding a stable solution to these problems we need some kind of regularization that is presented. The results have been applied for a singular equation.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004